Time-Stampless Adaptive Nonuniform Sampling for Stochastic Signals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals

We study the problem of optimal sub-Nyquist sampling for perfect reconstruction of multiband signals. The signals are assumed to have a known spectral support that does not tile under translation. Such signals admit perfect reconstruction from periodic nonuniform sampling at rates approaching Landau’s lower bound equal to the measure of . For signals with sparse , this rate can be much smaller ...

متن کامل

Sparse signals estimation for adaptive sampling

This paper presents an estimation procedure for sparse signals in adaptive setting. We show that when the pure signal is strong enough, the value of loss function is asymptotically the same as for an optimal estimator up to a constant multiplier.

متن کامل

Sampling theorems for uniform and periodic nonuniform MIMO sampling of multiband signals

We examine a multiple-input multiple-output (MIMO) sampling scheme for a linear time-invariant continuous-time MIMO channel. The input signals are modeled as multiband signals with different spectral supports, and the channel outputs are sampled on either uniform or periodic nonuniform sampling sets, with possibly different but commensurate intervals on the different outputs. This scheme encomp...

متن کامل

Vector sampling expansion: deterministic and stochastic signals

This work extends Papoulis' General Sampling Expansion to the vector case where N band limited signals are passed through a multi-input multi-output (MIMO) LTI system that generates M (M N) output signals. We nd necessary and su cient conditions for reconstructing the N input signals from the samples of the M output signals, all sampled at N=M the Nyquist rate. A surprising necessary condition ...

متن کامل

Adaptive Importance Sampling via Stochastic Convex Programming

We show that the variance of the Monte Carlo estimator that is importance sampled from an exponential family is a convex function of the natural parameter of the distribution. With this insight, we propose an adaptive importance sampling algorithm that simultaneously improves the choice of sampling distribution while accumulating a Monte Carlo estimate. Exploiting convexity, we prove that the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2012

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2012.2208633